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Superposition, Entanglement, and Product of States
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The superposition relation extended to the statistical operators is shown to be invariant
under tensor product and partial trace operations. Particular mathematical examples of
superposition are characterized as well as the nature of the Schmidt decomposition of
pure states superposition of other pure states.
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1. INTRODUCTION

Entanglement of states is a point where the difference between Quantum
Mechanics and Classical Mechanics is more evident. Entanglement of pure states
is a concept directly connected to the foundations of Quantum Mechanics, being a
pure superposition of products of pure states, a possibility that exists only trivially
in Classical Mechanics.

The importance of the concept of entanglement of states became evident after
the critical discussion on the completeness of Quantum Mechanics in the famous
paper by Einsteinet al. (1935). The notion of entanglement is important also in
relation with the results by Bellet al.(2001). (See, e.g., Peres, 1995.) By using the
Schmidt decomposition of nonfactorable entangled states of two quantum systems
it is possible to violate (Gisin and Peres, 1992) Bell’s inequality in the form of the
CHSH inequality (Clauseret al., 1969) in agreement with the experimental results
(Aspectet al., 1982).

Entanglement plays also, in a direct or an indirect way, an important role in
subsequent fields of research such as quantum computing and quantum commu-
nication (Colin, 1999) and quantum teleportation (Bennetet al., 1993).

The notion has been extended from the pure states to the density operators
for compound systems. An entangled density operator is a nonseparable density
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operator, namely an operator that cannot be expressed by a diagonal sum of prod-
ucts of density operators with positive coefficients. Necessary and sufficient con-
ditions have been given for the separability of the states (Horodeckiet al., 1996),
and, due to their interest, entanglement measures have also been defined (e.g.,
Rudolph, 2001). On the analogy of the pure states case, the extended notion of
entanglement can be compared with the extended notion of superposition for the
density operators (Zecca, 1980). This definition which is not very used in the liter-
ature, is an application to the density operators of a definition that holds at the level
of a general quantum logic and that has been already used by Varadarajan (1968).
(For a review about the superposition relation one can refer to Zecca, 1981.)

The object of the present paper is that of studying, in an elementary way, the
relation among superposition, entanglement, and product of statistical operators
in some particular mathematical situations. The study is done in the context of the
Hilbert model. After recalling some properties of the standard logic, the definition
of superposition is formulated, in equivalent ways, in that language and exem-
plified for different forms of statistical operators. Some preliminary results are
then given and some aspects of the behavior of superposition under tensor product
are put into evidence. The structure of the states under particular superposition
relations is then studied and characterized in terms of their separability properties,
Schmidt decomposition and reduction by partial trace operations. Even if the study
is performed elementally and the cases considered are relatively simple, the results
seem to be sufficiently indicative.

2. SUPERPOSITION OF STATES IN STANDARD LOGIC:
DEFINITIONS AND PRELIMINARY RESULTS

It is usefull to recall some aspects of the so called standard logic approach
to Quantum Mechanics. This is an axiomatic description of Quantum Mechanics
originated from a paper by Birkhoff and von Neumannn (1936). [A general for-
mulation and the Hilbert model realization from the propositional calculus can be
found in Jauch (1968) and Piron (1976). For successive different developments,
one can refer to Beltrametti and Cassinelli (1981).] According to that approach, to
the irreducible quantum physical system6 there is associated a pairL , S where
L ≡ L(H ) is the complete orthomodular atomic lattice of the closed subspaces
(propositions) of a separable complex Hilbert space of dimension≥3. The setS
is the set of allσ -additive probability measures (states) onL(H ). A propositiona
represents a class of equivalent yes–no experiments on6 and a states a preparing
procedure of6. The numbers(a) gives the probability of the outcome yes for a test
of a when6 is prepared according to the states. By Gleason’s theorem (Gleason,
1957), for every states there is one and only oneρ ∈ K (H ) such that

s(a) = sρ(a) = TrρPa, a ∈ L(H ) (1)
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K (H ) being the set of positive trace class operators of trace 1 of H (density
operators) (Schatten, 1960) andPa the orthogonal projection of rangea. In the
following we make the identificationS≡ K (H ) and writesρ(a) = ρ(a). In casea
is a one-dimensional subspace ofH we write alsoPa = Pψ anda = [ψ ], where
ψ is a unit vector ofa.

Definition 1. (Varadarajan, 1968). A stateρ is superposition of the states of
D ⊂ K (H ) if anyone of the following conditions hold:

σ (a) = 0∀σ ∈ D, a ∈ L(H )⇒ ρ(a) = 0 (2)

σ (b) = 1∀σ ∈ D, b ∈ L(H )⇒ ρ(b) = 1 (3)

The formulations (2), (3) are indeed equivalent because, from the additivity of the
states,ρ(a) = 0 iff ρ(a⊥) = 1, a⊥ being the Hilbertian orthogonal complement of
a in L(H ). By considering the spectral decomposition of a density operator and
the representation theorem (1), it is not difficult to show thatρ is superposition of
the states inD, in the sense of (2) or (3), if and only if

[ρ] ≤
∨
σ∈D

[σ ] (4)

where [ρ] denotes the range ofρ as an operator inH ; ≤ denotes set theoretical
inclusion; and∨σ∈D[σ ] the closure of the linear span of the subspaces [σ ], σ ∈ D
of H . (For a formal proof see, e.g., Gorini and Zecca, 1975; Zecca, 1980.) In case
of the pure statesρ = Pψ andD = {Pψ1, Pψ2}, the result (4) implies easily

ψ = αψ1+ βψ2 (|α|2+ |β|2 = 1) (5)

whose content is that of superposition of pure states in Dirac’s sense (Dirac, 1947).
If insteadρ is a convex combinationρ = 6iαiρi , (ρ , ρi ∈ K (H )), thenρ is su-
perposition of the set of states{ρi } for which is holds [ρ] = ∨i [ρi ].

Suppose now we have a second phisical system6̃ with associated logic and
statesL(H̃ ), K (H̃ ). According to the standard formulation of quantum mechanics,
the compound system6 + 6̃ has logicL(H ⊗ H̃ ) and statesK (H ⊗ H̃ ). At the
level of abstract proposition-state structure a notion of product is possible, which
preserves superposition (Zecca, 1994). It is a fact that this property does hold in
the Hilbert model.

Proposition 1. Let ρ ∈ K (H ), D ⊂ K (H ) and ρ̃ ∈ K (H ), D ⊂ K (H̃ ). Then
the following are equivalent.

(i) ρ is superposition of the states of D andρ̃ is superposition of the states
of D̃;

(ii) ρ ⊗ ρ̃ is superposition of the set of states D⊗ D̃ = {σ ⊗ σ̃ : σ ∈ D, σ̃ ∈
D̃}.
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Proof: In L(H ⊗ H̃ ) one has that [ρ] ⊗ [ρ̃] ≤ ∨σ∈D ⊗∨σ̃∈D̃ if and only if
both [ρ] ≤ ∨σ∈D[σ ] and [ρ̃] ≤ ∨σ̃∈D[σ̃ ] (compare with Zecca, 1994). The proof
is completed by taking into account that it also holds [ρ] ⊗ [ρ̃] = [ρ ⊗ ρ̃] and
∨σ∈D ⊗∨σ̃∈D̃[σ̃ ] ≡ ∨σ∈D,σ̃∈D̃[σ ⊗ σ̃ ]. ¤

Suppose nowρ is a separable state ofK (H ⊗ H̃ ), that isρ = 6iωiρi ⊗
ρ̃i (e.g., Rudolph, 2001) (ωi positive numbers). Then also hereρ is a special
superposition of the set of states{ρi ⊗ ρ̃i } for which it holds [ρ] = ∨i [ρi ] ⊗ [ρ̃i ].
There follows that every pure state (one-dimensional projection) associated to the
spectral decomposition ofρ is a superposition, not only ofρ, but also of the family
of states{ρi ⊗ ρ̃i }.

3. PARTICULAR CONFIGURATIONS OF SUPERPOSITION

It is clear from the previous considerations that there are relevant superposi-
tions with respect to family of pure states of the form{ϕi ⊗ ϕ̃k}, i , k in some index
set I. A characterization of some of these situations are now given.

Proposition 2. Let ρ be a superposition of the set of pure states{Pϕi ⊗ Pϕ̃k ,
i , k = 1, 2} with {ϕi } ⊂ H, {ϕ̃k} ⊂ H̃ . Thenρ = Pϕ1 ⊗ ρ̃ for someρ̃ if and only
if ϕ2 = exp(iλ)ϕ1, λ, real.

Proof: The spectral decomposition ofρ has the form

ρ =
dim[ρ]∑
k=1

αk Pηk

(ηi |ηk) = δik in H ⊗ H̃ . By the superposition assumption one has also the repre-
sentationη j = 6ikα

j
ikϕi ⊗ ϕ̃k. Suppose nowϕ2 = exp(iλ)ϕ1. Then obviously,η j

is of the formη j = ϕ1⊗ χ̃ j andρ is of the formρ = 6kαk Pϕ1⊗χ̃k = Pϕ1 ⊗ ρ̃.
Converselysupposeρ = Pϕ1 ⊗ ρ̃. By considering the spectral decomposition

of ρ̃, ρ is of the formρ = 6kβk Pϕ1⊗η̃k , (η̃i |η̃k) = δik in H . Hence [ρ] = [ϕi ] ⊗
∨k[η̃k], the indexk ranging from 1 to dim[ρ]. From the superposition assumption
and relation (1), any vector in [ρ] has both the forms

ϕi ⊗
dim[ρ]∑

j

β j η̃ j =
2∑

i ,k=1

αikϕi ⊗ ϕ̃k.

By projecting the last equation ontoϕi andϕ2 in H one gets respectively

β j η̃ j = αik(ϕ1|ϕi )ϕ̃k; (ϕ2|ϕ1)β j η̃ j = αik(ϕ2|ϕi )ϕ̃k
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where repeated indexes are understood to be summed. This implies
αik(ϕ1|ϕi )(ϕ2|ϕ1) = αik(ϕ2|ϕi ), k = 1, 2. By developing the sum one gets
|(ϕ2|ϕ1)| = 1 and hence the result since‖ϕ1‖ = ‖ϕ2‖ = 1.

The previous result holds also forn > 2 by strengthening the superposition
assumption. ¤

Proposition 3. Let D= {Pϕi ⊗ Pϕ̃k , i , k,= 1, 2,. . . , n}, n > 2, {ϕi }, {ϕ̃k} unit
vectors in H, H̃ respectively. Then the following conditions are equivalent

(i) any superpositionρ of D is to the formρ = Pϕ1 ⊗ ρ̃
(ii) ϕk = exp(iλk)ϕ1 (λk ∈ <), k = 1, 2,. . , n.

Proof: Condition (ii) implies condition (i) in the same elementary way as in
Proposition 2. To show the converse, note that anyψ ∈ [ρ] can be simultaneously
written as

ϕ1⊗
dim[ρ]∑
k=1

αkη̃k =
2∑

i ,k=1

αikϕi ⊗ ϕ̃k

Since this holds for any superposition ofD, the last equation holds also by choosing
αik = 0 for i 6= 1, i1, k 6= 1, k1. By proceeding then as in the previous Proposi-
tion one gets|(ϕi1|ϕ1)| = 1 and, the indexi1 being arbitrary, there follows the
conclusion (ii). ¤

[Results similar to those of Propositions 2,3 hold obviously also for the other
component of the tensor product.] For what concerns the relation between super-
position and Schmidt representation (Ekert and Knight, 1995; Schmidt, 1906 and
references therein) one has the following.

Proposition 4. Let Pψ be superposition of the states in{Pϕi ⊗ Pϕ̃k, i , k,= 1,
2, . . , n}, n > 2, {ϕi }, {ϕ̃k} linearly independent unit vectors in H, H̃ respectively.
By (1),ψ = 6ikαikϕi ⊗ ϕ̃k and by the Schmidt representationψ = 6l pl ul ⊗ ũl .
Then the following properties hold:

(i) ui ∈ ∨k[ϕk], ũi ∈ ∨[ϕ̃k], (i = 1, . . , n) and pl = 0, l > n.
(ii) pl 6= 0, l = 1, 2,. . , n⇔ detαik 6= 0.

Proof: After projecting the identity6l pl ul ⊗ ũl = 6n
il αi l ϕi ⊗ ϕ̃l ontoϕk in H

and onto ˜ϕk in H̃ one obtains (no sum overk here)

pkuk =
n∑
i l

αi l (uk|ϕl )ϕ̃l ; pkũk =
n∑
i l

αi l (ũk|ϕ̃l )ϕ̃l
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There follows that, by suitably renumbering the index, one haspl = 0 for l > n .
Let now{vi }, {ṽi } be orthonormal bases in∨i [ϕi ], ∨i [ϕ̃i ] respectively, so choosen
that

vi = ui , ṽi = ũi , i such thatpi 6= 0

Thenϕi = 6k Aikvk, ϕ̃ j = 6l Bjl ṽl , where the matricesA, B are non singular. It is
then possible to write6l pl ul × ũl = 6n

l p′l vl ⊗ ṽl by definingp′l = pl for pl 6= 0
and p′l = 0 otherwise. Hence

n∑
l

p′l vl ⊗ ṽl =
∑

ik

αikϕi ⊗ ϕ̃k

=
∑
ikml

αik Ail Bkmvl ⊗ ṽm

Therefore6ik A>li αik Bkm = p′l δlm. The result (ii) follows by taking the determi-
nant: detA detB detα = 5n

l=1 p′l . ¤

A special case of Proposition 4 is that in which (ϕi |ϕk) = δik , (ϕ̃i |ϕ̃k) = δik .
ThenA, B are unitary matrices and detα = ±5l p′l .

Also the operation of taking partial trace is compatible with superposition. If
{ϕh}, {ϕ̃k} are complete orthonormal systems inH, H̃ the partial trace operators
of a density operatorσ ∈ K (H ⊗ H̃ ) will be denotedσϕ = Trϕ̃σ = 6k〈ϕ̃k|σ |ϕ̃k〉
andσϕ̃ = Trϕσ = 6i 〈ϕi |σ |ϕi 〉. ¤

Proposition 5. Let σ be superposition of the states of D= {ρα;α ∈ I } ⊂
K (H ⊗ H̃ ). Thenσϕ is superposition of the states of Dϕ = {ρϕ : ρ ∈ D} and
σϕ̃ is superposition of the states of Dϕ̃ = {ρϕ̃ : ρ ∈ D} for any{ϕh}, {ϕ̃k} complete
orthonormal systems in H, H̃ .

Proof: From the spectral decomposition of a density operator one has, for
everyα,

ρα =
∑

i

βαi Pφαi , φαi ⊥φαk , i 6= k

where, from the completeness of{ϕi ⊗ ϕ̃k}, φαi = 6abCα
iabϕa ⊗ ϕ̃b. Hence

ρα =
∑
iablm

βαi Cα
iabCα∗

i lm |ϕa〉〈ϕl | ⊗ |ϕ̃b〉〈ϕ̃m|

Therefore

ραϕ =
∑
iabl

βαi CiabC∗i lb |ϕa〉〈ϕl |

We now show the result by applying the Definition (2), namely by showing that
ραϕ (x) = 0∀α ⇒ σϕ(x) = 0, x ∈ L(H ⊗ H̃ ). One first gets from the last equation,
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by writing Px in terms of one-dimensional projections,Px = 6k|xk〉〈xk|(xi⊥xk,
i 6= k),

0= ραϕ (x) =
∑
hib

βαi

(∑
a

Cα
iab〈xh|ϕa〉

)(∑
l

Cα∗
i lb〈ϕl |xh〉

)
that implies ∑

a

Cα
iab〈xh|ϕa〉 = 0 ∀α, i , b, h (6)

Consider now the spectral decomposition ofσ = 6i γi Pηi . One has, by assump-
tions, [σ ] ≤ ∨α[ρα] = ∨αi [φαi ]. Therefore ηi can be represented asηi =
6kα′Aα

′
ikφ

α′
k , where the sum overα′ is at most countable. There follows

σ =
∑
α′β ′i jk

γi Aα
′

ik Aβ
′∗

i j

∣∣φα′k

〉〈
φ
β ′
j

∣∣
By using the representation of theφ′s in terms of theϕi ⊗ ϕ̃k’s one has also

σϕ =
∑

l

〈ϕ̃l |σ |ϕ̃l 〉 =
∑

α′β ′i jkabc

γi Aα
′

ik Aβ
′∗

i j Cα′
kabC

β ′∗
jcb|ϕa〉〈ϕc|

Therefore

σϕ(x) =
∑

α′β ′i jkabch

γi Aα
′

ik Aβ
′∗

i j Cα′
kabC

β ′∗
jcb〈ϕc|xh〉〈xh|ϕa〉 = 0

by using the result in (6). The second part of the proof can be performed in a
completely similar way. ¤
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