International Journal of Theoretical Physics, Vol. 42, No. 7, July 2692003)

Superposition, Entanglement, and Product of States
Antonio Zeccah?3
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The superposition relation extended to the statistical operators is shown to be invariant
under tensor product and partial trace operations. Particular mathematical examples of
superposition are characterized as well as the nature of the Schmidt decomposition of
pure states superposition of other pure states.
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1. INTRODUCTION

Entanglement of states is a point where the difference between Quantum
Mechanics and Classical Mechanics is more evident. Entanglement of pure states
is a concept directly connected to the foundations of Quantum Mechanics, being a
pure superposition of products of pure states, a possibility that exists only trivially
in Classical Mechanics.

The importance of the concept of entanglement of states became evident after
the critical discussion on the completeness of Quantum Mechanics in the famous
paper by Einsteiret al. (1935). The notion of entanglement is important also in
relation with the results by Bedit al. (2001). (See, e.g., Peres, 1995.) By using the
Schmidt decomposition of nonfactorable entangled states of two quantum systems
itis possible to violate (Gisin and Peres, 1992) Bell's inequality in the form of the
CHSH inequality (Clausest al., 1969) in agreement with the experimental results
(Aspectet al,, 1982).

Entanglement plays also, in a direct or an indirect way, an important role in
subsequent fields of research such as quantum computing and quantum commu-
nication (Colin, 1999) and quantum teleportation (Beretetl,, 1993).

The notion has been extended from the pure states to the density operators
for compound systems. An entangled density operator is a nonseparable density
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operator, namely an operator that cannot be expressed by a diagonal sum of prod-
ucts of density operators with positive coefficients. Necessary and sufficient con-
ditions have been given for the separability of the states (Horodtehi 1996),

and, due to their interest, entanglement measures have also been defined (e.g.,
Rudolph, 2001). On the analogy of the pure states case, the extended notion of
entanglement can be compared with the extended notion of superposition for the
density operators (Zecca, 1980). This definition which is not very used in the liter-
ature, is an application to the density operators of a definition that holds at the level
of a general quantum logic and that has been already used by Varadarajan (1968).
(For a review about the superposition relation one can refer to Zecca, 1981.)

The object of the present paper is that of studying, in an elementary way, the
relation among superposition, entanglement, and product of statistical operators
in some particular mathematical situations. The study is done in the context of the
Hilbert model. After recalling some properties of the standard logic, the definition
of superposition is formulated, in equivalent ways, in that language and exem-
plified for different forms of statistical operators. Some preliminary results are
then given and some aspects of the behavior of superposition under tensor product
are put into evidence. The structure of the states under particular superposition
relations is then studied and characterized in terms of their separability properties,
Schmidt decomposition and reduction by partial trace operations. Even if the study
is performed elementally and the cases considered are relatively simple, the results
seem to be sufficiently indicative.

2. SUPERPOSITION OF STATES IN STANDARD LOGIC:
DEFINITIONS AND PRELIMINARY RESULTS

It is usefull to recall some aspects of the so called standard logic approach
to Quantum Mechanics. This is an axiomatic description of Quantum Mechanics
originated from a paper by Birkhoff and von Neumannn (1936). [A general for-
mulation and the Hilbert model realization from the propositional calculus can be
found in Jauch (1968) and Piron (1976). For successive different developments,
one can refer to Beltrametti and Cassinelli (1981).] According to that approach, to
the irreducible quantum physical systéinthere is associated a pdir S where
L = L(H) is the complete orthomodular atomic lattice of the closed subspaces
(propositions) of a separable complex Hilbert space of dimensriThe setS
is the set of alb-additive probability measures (states)lofH). A propositiona
represents a class of equivalent yes—no experimenisamd a stats a preparing
procedure ok. The numbes(a) gives the probability of the outcome yes for a test
of awhenX is prepared according to the statdy Gleason’s theorem (Gleason,
1957), for every state there is one and only one e K(H) such that

s(a) =s,(a) = TrpP? aeL(H) 1)
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K(H) being the set of positive trace class operators of trace 1 of H (density
operators) (Schatten, 1960) aR& the orthogonal projection of range In the
following we make the identificatio = K (H) and writes, (a) = p(a). In casea

is a one-dimensional subspacetbfive write alsoP? = P¥ anda = [v/], where

Y is a unit vector of.

Definition 1. (Varadarajan, 1968). A state is superposition of the states of
D c K(H) if anyone of the following conditions hold:

c(@=0Vo €D, acelL(H)= p@ =0 (2)
o(b)=1Vo € D, belL(H)= pb)=1 3

The formulations (2), (3) are indeed equivalent because, from the additivity of the
statesp(a) = 0iff p(at) = 1, a' being the Hilbertian orthogonal complement of
ain L(H). By considering the spectral decomposition of a density operator and
the representation theorem (1), it is not difficult to show & superposition of

the states irD, in the sense of (2) or (3), if and only if

[l = \/Io] @)
oeD
where |p] denotes the range gf as an operator ifd; < denotes set theoretical
inclusion; andv,p[o] the closure of the linear span of the subspaedsq € D
of H. (For a formal proof see, e.g., Gorini and Zecca, 1975; Zecca, 1980.) In case
of the pure statep = P¥ andD = {PV:, P2}, the result (4) implies easily

v =ay1+ Y2 (o + I8P =1) (5)

whose content is that of superposition of pure states in Dirac’s sense (Dirac, 1947).
If insteadp is a convex combinatiop = X« i, (0, pi € K(H)), thenp is su-
perposition of the set of staté¢g; } for which is holds p] = Vvi[pil.

Suppose now we have a second phisical systewith associated logic and
stated_(H), K (H). According to the standard formulation of quantum mechanics,
the compound system + ¥ has logicL(H ® H) and state& (H ® H). At the
level of abstract proposition-state structure a notion of product is possible, which
preserves superposition (Zecca, 1994). It is a fact that this property does hold in
the Hilbert model.

Proposition 1. Letp € K(H), D c K(H) and p € K(H), D c K(H). Then
the following are equivalent.

(i) p is superposition of the states of D afids superposition of the states
of D;

(i) p ® pissuperpositionofthe set of statesD = {c ® 6 : 0 € D, €
D}.
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Proof: In L(H ® H) one has thatd] ® [p] < Veep ® Vsep if and only if
both [p] < Vsep[o]and [] < Vsep[6] (compare with Zecca, 1994). The proof
is completed by taking into account that it also hold$® [p] = [p ® 5] and
VoeD @ V&eﬁ[(}] = VaeD,&eﬁ[U ® o). o

Suppose now is a separable state &f(H ® H), that isp = Zjwi g ®
oi (e.g., Rudolph, 2001)«f positive numbers). Then also hepeis a special
superposition of the set of statgs ® p;} for which it holds p] = vi[pi] ® [pi].
There follows that every pure state (one-dimensional projection) associated to the
spectral decomposition @fis a superposition, not only @f, but also of the family
of states{p; ® 0}

3. PARTICULAR CONFIGURATIONS OF SUPERPOSITION

It is clear from the previous considerations that there are relevant superposi-
tions with respect to family of pure states of the fan ® ¢k}, i, kin some index
set |. A characterization of some of these situations are now given.

Proposition 2. Let p be a superposition of the set of pure state$' ® P&,
i,k=1,2 with{¢;} C H, {¢k} C H. Thenp = P ® p for somep if and only
if oo = exp(A)py, A, real.

Proof: The spectral decomposition pfhas the form

dim{p]

p=Y axP™
k=1

milm) =8ikin H® H. By the superposition assumption one has also the repre-
sentation); = Sk @i ® k. SUPPOSE NOW, = exp(A)¢1. Then obviouslyy;
is of the formn; = ¢1 ® %; andp is of the formp = Ty P¥1®% = P11 ® p.

Converselyguppose = P# ® p. By considering the spectral decomposition
of p, p is of the formp = S, B P*®k, (7i 17k) = 8i in H. Hence p] = [¢i] ®
Vk[7k], the indexk ranging from 1 to dimp]. From the superposition assumption
and relation (1), any vector irp] has both the forms

dimp] 2
G Y Bifij= ) kg ® .
j i k=1

By projecting the last equation ongg andg, in H one gets respectively

Binj = aik(e1lei)dx:  (@2101)Binj = ai(p219i)Pk
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where repeated indexes are understood to be summed. This implies
aik(@1l¢i)(2l91) = aik(p2lpi), k=1,2. By developing the sum one gets
[(p2191)] = 1 and hence the result singe; || = |l¢2|l = 1.

The previous result holds also far> 2 by strengthening the superposition
assumption. O

Proposition 3. Let D= {P* ® P%,i,k,=1,2,...,n},n > 2, {¢}, {¢i} unit
vectors in H H respectively. Then the following conditions are equivalent

(i) any superpositiow of D is to the formpo = P ® p
(i) ok =explri)pr(ik € R), k=1,2,..,n

Proof: Condition (ii) implies condition (i) in the same elementary way as in
Proposition 2. To show the converse, note thatwny [ o] can be simultaneously
written as

dim(o] 2
P1® Y k=) aikgi ® i
] k=1

Since this holds for any superposition@fthe last equation holds also by choosing
aik = 0 fori # 1,i1, k # 1,k;. By proceeding then as in the previous Proposi-
tion one gets(¢i,|¢1)| = 1 and, the index; being arbitrary, there follows the
conclusion (ii). O

[Results similar to those of Propositions 2,3 hold obviously also for the other
component of the tensor product.] For what concerns the relation between super-
position and Schmidt representation (Ekert and Knight, 1995; Schmidt, 1906 and
references therein) one has the following.

Proposition 4. Let P¥ be superposition of the states iR* ® P%, i, k, = 1,
2,..,n},n> 2 {¢}, (¢ linearly independent unit vectors in,HH respectively.
By (1), ¥ = Zikaikgi ® ¢« and by the Schmidt representatigh= %, pju; ® G.
Then the following properties hold:

() u € viled, Ui € V[, (i=1,..,n)and p = 0,1 > n.
(i) p=#£0,1=1,2,..,n < detajx #0.

Proof: After Qrojecting the identitys; puy @ 0 = T ciii @ @ ontogy in H
and ontagy in H one obtains (no sum ové&rhere)

n n
Pl = Do (o) Pelic =Y o (Tl 1)
il il
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There follows that, by suitably renumbering the index, onefias O forl > n.
Let now{vi}, {V;} be orthonormal bases in[¢;], Vvi[@i] respectively, so choosen
that

vi = Uj, VY =10, isuchthap #0

Theng; = ZxAikVi, §j = 21 B, where the matriced, B are non singular. Itis
then possible to writ& piu; x 0y = E'pjvi ® ¥ by definingp{ = p for pr #0
andp = 0 otherwise. Hence

n
Z pvi ® % = Zaikwi ® Pk
| ik

= ZaikAn BkmVi ® Vi

ikml

ThereforeZik Al aik Bkm = p{8im. The result (ii) follows by taking the determi-
nant: deA detB deta = I1_, p/. o

A special case of Proposition 4 is that in whieh|{k) = ik, (@i |@k) = Sik.
ThenA, B are unitary matrices and det= £IT p/.

Also the operation of taking partial trace is compatible with superposition. If
{¢n}, (@} are complete orthonormal systemshn H the partial trace operators
of a density operatar € K(H ® I:|) will be denoter, = Trzo = X (@klo |Pk)
andog = Tr,o = Zi{gilo|ei). |

Proposition 5. Let o be superposition of the states of B{p% a €|} C

K(H ® H). Theno, is superposition of the states of,B= {p, : p € D} and
o is superposition of the states o B= {p; : p € D} for any{gn}, {¢«} complete
orthonormal systems in H1.

Proof: From the spectral decomposition of a density operator one has, for
everya,

pU =Y BIPY, gt Llgy, i #k
i
where, from the completeness{gi ® ¢u}, ¢ = ZapCiypva ® @p. Hence
P =Y BICLLCimlga) (1] ® o) (@ml

iablm
Therefore

P =Y BCianCiipl¢a) (4]
iabl

We now show the result by applying the Definition (2), namely by showing that
py(X) = 0V = 0,(x) = 0,x € L(H ® H). One first gets from the last equation,
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by writing P* in terms of one-dimensional projectior®? = Xy | Xk ) (Xk| (X L Xk,
i #K),

0=pf() = B (D Chnlxnlea) ) | D Cifs e 1xn)
|

hib a
that implies

Zcﬁb(xhk/’d =0Ve,i,b,h (6)
a

Consider now the spectral decompositionsoE Xy P". One has, by assump-
tions, ] < Vvu[p*] = Vail¢{]. Therefore n; can be represented ag =
Tk AL @, where the sum over’ is at most countable. There follows

o= 3 nALAL g o

o'Blijk
By using the representation of thés in terms of thep; ® @k’s one has also

gy =Y (@lold) = Y nALA]CLClolea) gl
| o'Blijkabc

Therefore

op(X) = > NALACECln (el Xn) (Xnlga) = O
o’ B’ijkabch

by using the result in (6). The second part of the proof can be performed in a
completely similar way. O
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